04 Matching Networks
4th unit in course 3, *RF Basics and Components*

Dipl.-Ing. Dr. Michael Gebhart, MSc

RFID Qualification Network, University of Applied Sciences, Campus 2
WS 2013/14, September 30th
Content

- Introduction: How to match the chip output to the antenna impedance?
 - Loop antenna
 - Quality factor
 - Low impedance or load matching: Power and Q
 - Modulation envelope and Qrequirement (single resonance)
 - Network transformation: differential to single-ended

- The general matching solution: π and T-topology networks

- Impedance adjustment with L-topology
 - Antenna impedance
 - Q-factor adjustment for operating frequency
 - Determination of serial and parallel capacitance for impedance adjustment

- The resonant coupling system
 - How near-field coupling affects the air interface
How to match the chip to the antenna?

- NFC device in Reader Mode (TX), a network adjusts (transforms) the antenna impedance to a desired value for the chip driver output. This allows optimum power transfer and to meet other contactless property requirements.

Narrow-band “matching” for the 13.56 MHz carrier frequency in reader mode
The loop antenna is a **distributed component** with inductance \(L \) as main element and capacitance \(C \) and resistance \(R \) as parasitic network elements.

For simulation it must be represented by an **equivalent circuit** network of **lumped elements**. Over a wide frequency range this can be a loose coupled reactive ladder network of resonance circuits - it has several resonances in frequency domain.

At 13.56 MHz carrier frequency we use the **fundamental (lowest) resonance**. So we can simplify the equivalent circuit e.g. to a parallel resonance circuit (since losses are mainly determined by chip current consumption in Proximity Systems).

Note: This is a **narrow-band approximation** only!
The Quality factor

Originally, the quality factor reports the quality at which the component (coil, capacitor) represents the pure network element (inductance, capacitance).

For a 2nd order resonant LCR circuit, Q can be determined in **frequency domain**. Q is related to the bandwidth and can be measured from the Resistance trace.

\[
Q(\omega) = \frac{\omega L_S}{R_S} \quad \text{and} \quad Q(\omega) = \frac{\omega C_p}{R_p}
\]

Note: This is only valid, if the broad band equivalent circuit representation really is a parallel resonant circuit!

For a 2nd order resonant LCR circuit, Q can also be determined in **time domain**. Q is related to the envelope according to

\[
e(t) = Ae^{-t/\tau} = Ae^{-t \cdot \frac{\omega_{RES}}{2Q}} = Ae^{-(\zeta \omega_{RES})t}
\]

\[
Q(\omega_{RES}) = \frac{\omega_{RES} \tau}{2}
\]
Driver concepts – Power and Q requirement

- If we consider the quality factor, it depends how the load / antenna is matched to the source / driver:

Low output impedance

$Q_{ANT} \sim Q_{SYS}$, e.g. ~ 12.5

$P_{SYS} \sim P_{ANT} \sim \frac{1}{Q_{ANT}}$, e.g. ~ 400 mW

Load Matching

$Q_{ANT} \sim 2Q_{SYS}$, e.g. ~ 25

$P_{SYS} \sim P_{SOURCE} + P_{ANT} \sim 2P_{ANT} \sim \frac{2}{2Q_{ANT}}$, e.g. $\sim 2 \times 200$ mW

We need a certain operational system Q to achieve time constants for modulation (e.g. ~ 12.5). In Load Matching, Q_{SYS} is half the value of the open antenna – Q_{ANT} can be doubled. The power consumed in the antenna is related to $1/Q$.

For Load Matching, the required total power is the same, as for low output impedance.

But for low output impedance no power is dissipated in the amplifier, all in the antenna network.
Power and Q requirement

- The unloaded H-field strength emitted by an antenna with resonance at carrier frequency can be approximated by...

\[P = U \cdot I = I^2 R = \frac{U^2}{R} \]

\[Z = R + jX \quad \text{where} \quad X = \omega L \]

\[Q = \frac{X}{R} \quad \Rightarrow \quad R = \frac{\omega L}{Q} \]

\[\Rightarrow P = \frac{I^2 \omega L}{Q} \]

\[\Rightarrow H \sim I_{\text{ANT}} \approx \sqrt{\frac{P \cdot Q_{\text{ANT}}}{\omega \cdot L_{\text{ANT}}} \cdot N} \]
Modulation envelope and Q requirement

- To emit high H-field from low driver power, Q should be high,
- To meet modulation timing specifications, Q should be low
- Q is only clearly defined for a single-resonance circuit.
- For this we get for ISO/EC14443 Type B specifications a maximum system Q…

- To note: Modulation index and overshoots may be even more stringent!
Modulation envelope and Q requirement

- For Type A specifications...

<table>
<thead>
<tr>
<th>Bit rate</th>
<th>a min</th>
<th>a max</th>
<th>Duration min</th>
<th>Duration max</th>
<th>Q max</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc/128</td>
<td>-</td>
<td>-</td>
<td>28/fc</td>
<td>40.5/fc</td>
<td>-</td>
</tr>
<tr>
<td>fc/64</td>
<td>0</td>
<td>0.18</td>
<td>16.5/fc</td>
<td>20/fc</td>
<td>33.64</td>
</tr>
<tr>
<td>fc/32</td>
<td>0</td>
<td>0.38</td>
<td>8/fc</td>
<td>10/fc</td>
<td>32.47</td>
</tr>
<tr>
<td>fc/16</td>
<td>0.22</td>
<td>0.58</td>
<td>4/fc</td>
<td>5/fc</td>
<td>28.84</td>
</tr>
<tr>
<td>fc/128</td>
<td>-</td>
<td>-</td>
<td>7/fc</td>
<td>t1</td>
<td>36.41</td>
</tr>
<tr>
<td>fc/28</td>
<td>-</td>
<td>-</td>
<td>1.5/fc</td>
<td>16/fc</td>
<td>22.33</td>
</tr>
<tr>
<td>fc/128</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>6/fc</td>
<td>21.79</td>
</tr>
<tr>
<td>fc/64</td>
<td>0</td>
<td>0.18</td>
<td>t1/2 + 4/fc</td>
<td>t1</td>
<td>42.64</td>
</tr>
<tr>
<td>fc/32</td>
<td>0</td>
<td>0.38</td>
<td>t1/2 + 1/fc</td>
<td>t1</td>
<td>40.93</td>
</tr>
<tr>
<td>fc/16</td>
<td>0.22</td>
<td>0.58</td>
<td>t1/2 +</td>
<td>t1</td>
<td>40.73</td>
</tr>
</tbody>
</table>

(1) quality factor based on fall time t1 - t2
(2) quality factor based on fall time t1 - t5
(3) t_x = (t1 - t5) - 3/fc
(4) t_y = (t1 - t5) + 8/fc
(5) t_z = (t1 - t5) + 4.5/fc
Network transformation: single-ended, differential

- In practice, the TX output is usually differential (to be able to have double output voltage swing from a single supply voltage).

- For simplicity reasons, RF System behaviour can be considered for a single-ended network. Component values for the differential network can then be calculated by the following considerations:
 - Source and load (antenna) impedance is split up for single-ended consideration

- Serial components:

- Parallel components:

\[
\begin{align*}
R_{\text{DIFF}} &= \frac{1}{2} R_{\text{SINGLE}} \\
L_{\text{DIFF}} &= \frac{1}{2} L_{\text{SINGLE}} \\
C_{\text{DIFF}} &= 2C_{\text{SINGLE}} \\
R_{\text{DIFF}} &= \frac{1}{2} R_{\text{SINGLE}} \\
L_{\text{DIFF}} &= \frac{1}{2} L_{\text{SINGLE}} \\
C_{\text{DIFF}} &= 2C_{\text{SINGLE}}
\end{align*}
\]
Network transformation: single-ended, differential

- So for the typical matching network, values for a single-ended equivalent circuit are following quantities of the differential network:

![Diagram showing network transformation and equivalent circuits.](image-url)
Impedance Matching: π or T topology

- Any complex load can be matched to a source impedance using an LC element network in π- or T topology (general solution). As the antenna impedance varies over frequency, this matching is for the carrier frequency only.

\[Z_1 = -j \frac{R_D \cos(\varphi) - \sqrt{R_D R_A}}{\sin(\varphi)} = -j \sqrt{R_D R_A} \left(\frac{R_D}{R_A} \cos(\varphi) - 1 \right) \]

\[Z_2 = -j \frac{R_A \cos(\varphi) - \sqrt{R_D R_A}}{\sin(\varphi)} = -j \sqrt{R_D R_A} \left(\frac{R_A}{R_D} \cos(\varphi) - 1 \right) \]

\[Z_3 = -j \sqrt{R_D R_A} \frac{\sin(\varphi)}{\sin(\varphi)} \quad \varphi \ldots \text{Phase deviation output to input} \]

\[Z_A = j \frac{R_D R_A \sin(\varphi)}{R_A \cos(\varphi) - \sqrt{R_D R_A}} = j \sqrt{R_D R_A} \sin(\varphi) \left(\frac{R_A}{R_D} \cos(\varphi) - 1 \right)^{-1} \]

\[Z_B = j \frac{R_D R_A \sin(\varphi)}{R_D \cos(\varphi) - \sqrt{R_D R_A}} = j \sqrt{R_D R_A} \sin(\varphi) \left(\frac{R_D}{R_A} \cos(\varphi) - 1 \right)^{-1} \]

\[Z_C = j \sqrt{R_D R_A} \sin(\varphi) \]

Literature: F. E. Terman, "Network Theory, Filters, and Equalizers"
Towards a more specific impedance adjustment

- Any complex load can be matched to any source impedance using π- or T- topology.

- However, there is at least one inductor L, which introduces losses…

- We may not need to adjust *any* load:
 - antennas are an inductive load (1^{st} self-resonance $> f_{\text{CAR}}$)
 - phase relation output to input for the carrier frequency is irrelevant

- So there is a more specific solution, consisting only of capacitors
 - HF capacitors of C0G or NP0 have negligible losses and less tolerance
 - Less components also means reduction of costs and PCB area
Impedance adjustment with L-topology

An equivalent circuit of the loop antenna may have the above structure.

- It can be extracted from measurement.
- Complex antenna impedance Z_A can be calculated (over angular frequency ω).

$$Z_A = \frac{R_A + j \omega L_A}{1 + j \omega R_A C_A - \omega^2 L_A C_A}$$

$$Z_A = \frac{0.58 \Omega + j (2 \cdot \pi \cdot 13.56 \cdot 10^6 \text{Hz} \cdot 1.314 \cdot 10^{-6} H)}{1 + j (2 \cdot \pi \cdot 13.56 \cdot 10^6 \text{Hz} \cdot 0.58 \Omega \cdot 2.35 \cdot 10^{-12} F) - [2 \cdot \pi \cdot 13.56 \cdot 10^6 \text{Hz} \cdot 1.314 \cdot 10^{-6} H \cdot 2.35 \cdot 10^{-12} F]}$$

$$Z_A (@ 13.56 \text{ MHz}) = 0.607 + j114.52$$

$\omega >> f_{\text{RES}}$ $>$ f_{CAR} $Q_A >> (>) Q_{\text{SYS}}$
Antenna coupling – NFC antenna only

- Coupling affects antenna impedance significantly
 - mutual inductance L_A changes
 - „Loading“ Q changes

- Impedance trace is shown in Smith Chart

distance variation to “loading” antenna \Rightarrow coupling factor k varies
Q-factor adjustment for operating frequency

- The quality factor of the antenna conductor shall be high... above the intended Q-factor for operation at the carrier frequency 13.56 MHz.
- We can neglect losses in the capacitor (if good components are chosen)
 - For one frequency, the serial equivalent circuit can be calculated to an equivalent parallel circuit for the inductor, using the Q equation:

\[
Q_A = \frac{\omega L_A}{R_{SERIAL}} = \frac{R_{PARALLEL}}{\omega L_A}
\]

- This way, an external resistor in series to the antenna allows to adjust the intended \(Q_A\):

\[
R_E = \frac{\omega L_A}{Q_{INTENDED}} - R_A
\]

- To note: This can again be recalculated to a “new” antenna impedance \(Z_A\) (which might also be a parallel equivalent circuit).
Impedance adjustment with L-topology

\[Z_A = \frac{R_A + j\omega L_A}{1 + j\omega R_A C_A - \omega^2 L_A C_A} \]

\[Z_M = Z_E = Z \equiv \frac{1 + j\omega Z_A (C_{SM} + C_{PM})}{\omega (jC_{SM} - \omega C_{PM} Z_A)} \]

\[C_{SM} (C_{PM}) = \frac{R_A L_A}{(\omega L_A)^2 R_D [1 - \omega^2 L_A (C_A + C_{PM})]} \]

\[C_{PM} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q} \]

\[p = \frac{2\omega^2 L_A C_A - 2}{\omega^2 L_A} \]

\[q = \frac{R_A (1 + R_A)}{(\omega L_A)^6} - \frac{R_A}{\omega^4 R_D L_A} - \frac{2C_A}{\omega^2 L_A} + C_A^2 \]

\[f_{RES} \equiv f_{CAR} \]

\[\text{Im}\{Z\} \equiv 0 \]

\[\text{Re}\{Z\} \equiv R_{DESIRED} \]
Annex: Exact derivation of reactance matching with 2 capacitors (I):

- The admittance of the parallel equivalent antenna circuit and C_P is given by

$$Y_A = \frac{1}{R_A} + \frac{1}{sL_A} + sC_A + sC_P =$$

$$= \frac{1}{R_A} + \frac{1}{sL_A} + s(C_A + C_P)$$

- Impedance for the parallel equivalent circuit of antenna and reactance matching network is...

$$Z_{LAST} = \frac{1}{Y_A} + \frac{1}{sC_S} = \frac{sR_AL_A}{s^2R_AR_A(L_A(C_A + C_P) + sL_A + R_A} + \frac{1}{sC_S}$$

- This impedance is set equal to the desired real (⇒ reactance matching) source impedance (e.g. 50 Ω).

$$R_D \equiv \frac{s^2[R_A L_A C_S + R_A L_A(C_A + C_P)] + sL_A + R_A}{s^3R_AR_A L_A C_S(C_A + C_P) + s^2L_A C_S + sR_A C_S} \bigg|\text{Nenner}$$

$$s^3R_D R_A L_A C_S(C_A + C_P) + s^2R_D L_A C_S + sR_D R_A C_S = s^2[R_A L_A C_S + R_A L_A(C_A + C_P)] + sL_A + R_A$$
Annex: Exact derivation of reactance matching with 2 capacitors (II):

- Transition $s \rightarrow j\omega$ and coefficient comparison of real and imaginary parts:

$$- j\omega^3 R_D R_A L_A C_s (C_A + C_P) - \omega^2 R_D L_A C_s + j\omega R_D R_A C_s = -\omega^2 [R_A L_A C_s + R_A L_A (C_A + C_P)] + j\omega L_A + R_A$$

- Imaginary parts:

$$- j\omega^3 R_D R_A L_A C_s (C_A + C_P) + j\omega R_D R_A C_s = j\omega L_A$$

$$C_{S,a} = \frac{L_A}{R_D R_A - \omega^2 R_D R_A L_A (C_A + C_P)}$$

- Real parts:

$$- \omega^2 R_D L_A C_s = -\omega^2 [R_A L_A (C_A + C_P)] + R_A$$

$$C_{S,b} = \frac{-\omega^2 R_A L_A (C_A + C_P) + R_A}{\omega^2 L_A (R_A - R_G)}$$

- Both solutions for C_S are set equal, to solve for C_P
Annex: Exact derivation of reactance matching with 2 capacitors (II):

- For $C_{S,a} = C_{S,b}$ follows...

$$\omega^2 L_A^2 R_A - \omega^2 L_A^2 R_D = R_D^2 R_A^2 - \omega^2 R_D R_A^2 L_A (C_A + C_P) - \omega^2 R_D R_A^2 L_A (C_A + C_P) + \omega^4 R_D R_A^2 L_A^2 (C_A + C_P)^2$$

- Sort according the power of C_P:

$C_P^2 \left[\omega^4 R_D R_A^2 L_A^2 \right] + $

$+ C_P \left[2\omega^4 R_D R_A^2 L_A^2 C_A - 2\omega^2 R_D R_A^2 L_A \right] +$

$+ \left[R_D R_A^2 - \omega^2 L_A^2 (R_A - R_D) - 2\omega^2 R_D R_A^2 L_A C_A + \omega^4 R_D R_A^2 L_A^2 C_A^2 \right]$

- Resolve the characteristic equation, cancel:

$$p = \frac{2\omega^2 L_A C_A - 2}{\omega^2 L_A}$$

$$q = \frac{R_D R_A \left(\omega^4 R_A L_A^2 C_A^2 - 2\omega^2 R_A L_A C_A + 1 \right) - \omega^2 (R_A - R_D)}{\omega^4 R_A^2 L_A^2}$$

$$C_{P,a,b} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

- Knowing C_P allows to calculate C_S using one or the other equation. Note: only positive, real values have a physical meaning!
Antenna coupling – no EMC filter

\[\text{distance } 80 \ldots 3 \text{ mm} \]
Reasoning for extending the network

- Due to Standard (e.g. ISO/IEC14443) requirements for modulation timing, the allowable Q-factor for the operated system is rather low (~limited bandwidth).
- For efficient H-field emission, a higher reactive current is desirable \Rightarrow a 2nd resonance frequency can increase the bandwidth.
- Furthermore, this 2nd resonance (LC low-pass) can suppress unwanted harmonics emission (\Rightarrow name EMC filter)

- This comes on the expense of more signal distortions…
Impedance adjustment with L-topology

$Z_A = \frac{R_A + j\omega L_A}{1 + j\omega R_A C_A - \omega^2 L_A C_A}$

$Z_M = \frac{1 + j\omega Z_A (C_{SM} + C_{PM})}{\omega(jC_{SM} - \omega C_{SM} C_{PM} Z_A)}$

$Z_E = \frac{Z_M + j\omega L_0}{j\omega C_0 Z_M - \omega^2 L_0 C_0}$

$f_{RES} = f_{CAR}$

$\text{Im}\{Z\} = 0$

$\text{Re}\{Z\} = R_{DESIRED}$
Impedance adjustment with L-topology

- For the calculation of C_P and C_S we follow a more systematic approach and re-calculate a real and imaginary impedance for every step:

$$\begin{align*}
\bar{Z}_0 &= R_0 \\
\bar{Z}_M &= R_M + jX_M \\
\bar{Z}_A &= R_A + jX_A
\end{align*}$$

1st step: starting from right side, we calculate an antenna impedance Z_A

$$\begin{align*}
\text{Re}(Z_A) &= \frac{R_A X_{CA}^2}{R_A^2 + (X_{CA} + X_{LA})^2} = R_a \\
\text{Im}(Z_A) &= \frac{X_{CA} R_A^2 + X_{CA}^2 L_A + X_{CA} X_{LA}^2}{R_A^2 + (X_{CA} + X_{LA})^2} = X_a
\end{align*}$$
Impedance adjustment with L-topology

2nd step: starting from the left side, we calculate the EMC filter impedance and the adjustment network impedance Z_M

\[Z_0 = R_0 \]

\[\overline{Z_M} = R_M + jX_M \]

\[X_{C0} = -\frac{1}{\omega C_0} \]

\[X_{L0} = \omega L_0 \]

\[
\begin{align*}
\text{Re}(Z_M) &= \frac{R_0 X_{C0}^2}{R_0^2 + (X_{C0} + X_{L0})^2} = Rm \\
\text{Im}(Z_M) &= -jX_{C0} \frac{X_{L0}^2 + X_{C0}X_{L0} + R_0^2}{R_0^2 + (X_{C0} + X_{L0})^2} = Xm
\end{align*}
\]
Impedance adjustment with L-topology

- This way, we bring the matching condition in the middle of the network.

3rd step: Solving condition for the parallel and serial capacitance (target impedance):

\[
X_{p,2} = \frac{R_m}{R_a - R_m} \left(X_a \pm R_a \cdot \sqrt{\frac{R_a}{R_m} + \frac{X_a^2}{R_m R_a} - 1} \right)
\]

\[
C_p = -\frac{1}{\omega X_p}
\]

\[
X_S = X_m - X_p \cdot \frac{R_a^2 + X_a^2 + X_a X_p}{R_a^2 + (X_a + X_p)^2}
\]

\[
C_S = -\frac{1}{\omega X_S}
\]

- Finally, we need to sort out solutions which have no physical meaning…
 - only positive capacitance values have a representation
 - …not all antennas can be matched (if we violate a pre-condition, it is not possible…

- Note: In practice, the impedance must be checked by measurement, as parasitics may cause deviations from the ideal conditions
Antenna coupling – with EMC filter

\[\Delta: Z_{in} \quad 13.56 \text{ MHz} \]

\[\phi: Z_{ANT} \]

\[k, M \quad L_{ANT} \quad R_{ANT} \]

distance 80 ... 3 mm
Which loads can be matched?

- For the 2 capacitor network, the area in the Smith Chart is following...

Reference: *Electronic Applications of the Smith Chart* by Phillip H. Smith, 1969, p. 124
Which loads can be matched?

- For the network with EMC-filter, it is slightly more difficult
- We need to calculate a target impedance \(Z_T \) first, which depends on our desired input impedance \(Z_{IN} \), and the (loaded) antenna impedance \(Z_A \).

\[
Z_T = \frac{Z_{IN} - jX_{L0}}{1 + jX_{C0}(jX_{L0} - Z_{IN})}
\]
Which loads can be matched?

Antenna impedance Z_A (including coupling)

Region, which can be matched to desired network input impedance

Adjustable range for parallel cap C_P

Adjustable range for serial cap C_S

Target impedance Z_T

Network input impedance Z_{IN} (@ carrier frequency)

Frequency trace of Z_{IN}
Which loads can be matched?

- The region of network input impedances Z_{in} at carrier frequency, which can be adjusted to an intended resistance ("matched"), is limited by two circles.

- For the parallel capacitor, from short to Z_T

- For the serial capacitor, from Z_T to open.

- The C_P limit circle is given by
 - x_T, y_T… coordinates of Z_T
 - c…center, r… radius

$$c = \frac{-1 + x_T^2 + y_T^2}{2(x_T - 1)} \quad r = 1 - c$$

- The C_S limit circle is given by

$$c = \frac{-1 + x_T^2 + y_T^2}{2(x_T + 1)} \quad r = 1 + c$$

- Impedance adjustment possible, iff

$$\text{Re}(Z_A) \leq \text{Re}(Z_T)$$

$$\text{Im}(Z_A) \geq 0 \ (\text{inductive load})$$
The resonant coupling system

Reader equivalent circuit properties
L, R, C

Transponder equivalent circuit properties
L, R, C

Resonant system properties
k, f_{RES}, Q

Standard defines properties at the Air Interface
How near-field coupling affects the air interface

Coupling: 0%
Distance: -- mm

Matching-Impedance

EMC-FIL MATCHING ANTENNA

L₀ C₀ Cs Cp

C₀ L₀ A

A

Matching at current distance
How near-field coupling affects the air interface

Coupling: 6 %
Distance: 25 mm

Distance in mm

Distance in mm

LSB fc USB matching at current distance

H_{OVS} 1.076

\begin{array}{cccccc}
\text{t1 in } \tau_c & \text{t2 in } \tau_c & \text{t3 in } \tau_c & \text{t4 in } \tau_c & a & H_{OVS} \\
37.80 & 31.12 & 2.45 & 1.52 & 0.007 & 1.076
\end{array}
How near-field coupling affects the air interface

Coupling: 13%
Distance: 15 mm

Distance in mm

Driver power in mW

Distance in mm

Matching-Impedance

EMC-FIL

MATCHING

ANTENNA

\[t_1 \ \tau_C \ 37.77 \]
\[t_2 \ \tau_C \ 31.47 \]
\[t_3 \ \tau_C \ 2.12 \]
\[t_4 \ \tau_C \ 1.34 \]
\[a \ 0.007 \]
\[H_{OVS} \ 1.12 \]
How near-field coupling affects the air interface

- Coupling: 21%
- Distance: 10 mm

Graphs and Diagrams:
- Driver power vs. Distance in mm
- Matching Impedance Circuit Diagram
- Smith Chart with measurements:
 - t1 τ_C: 37.80
 - t2 τ_C: 29.41
 - t3 τ_C: 1.99
 - t4 τ_C: 1.34
 - a: 0.010
 - H_{OVS}: 1.16

Symbols and Notations:
- L_0, C_0, C_s, C_p, C_A, L_A, R_A (depicted in the circuit diagram)
How near-field coupling affects the air interface

Coupling: 38%
Distance: 5 mm

Distance in mm

Driver power in mV

LSB, fc, USB, matching at current distance

H_{OVS} = 1.15

<table>
<thead>
<tr>
<th>t1 in τ_C</th>
<th>t2 in τ_C</th>
<th>t3 in τ_C</th>
<th>t4 in τ_C</th>
<th>a</th>
<th>H_{OVS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.78</td>
<td>24.97</td>
<td>1.61</td>
<td>1.04</td>
<td>0.020</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Matching Impedance

EMC-FIL
MATCHING
ANTENNA
Thank you for your Audience!

Please feel free to ask questions...