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Content 

● Overview 

● Method of the Magnetic Momentum (Heinrich Hertz) 

● Method of Biot-Savart for H-field determination 

● Coupling system 

 Induced voltage 

 Elements: Inductance, capacitance, resistance, 

 Mutual inductance, coupling factor 
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Fields 

Overview 
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Contactless power transmission in near-field 

● Contactless power transmission almost exclusively works over the alternating H-field, in inductively coupled systems in the 

near-field. This is surrounding each current-carrying conductor and induces voltages in conductors near by. 
 

● In the proximity of a loop antenna, free propagation of an electromagnetic wave is not yet given, and the E-field is very 

weak, compared to the H-field. Moreover, there is a phase-shift (of almost 90 °) between E and H, so the wave impedance 

is complex (almost imaginary) and the EM wave carries reactive energy. 
 

● The H-field strength decreases by 1/d³ (- 60 dB/Dec.) in the near field, while the decay in far field is 1/d1 (- 20 dB/Dec.) for 

H-field as well as for E-field. 
 

● As the Emission Limits for allowed H-field radiation are normally measured in a constant distance (EU: 10 m, US: 30 m), 

which already is in the far-field for 13,56 MHz, using the H-field at HF frequencies has the benefit to allow quite high power 

transmission over short distances from Reader to Transponder (which is a few cm for person-related card systems). 
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Concepts to estimate the emitted H-field 

● Magnetic Momentum 

 This method was developed by Heinrich Hertz in analogy to the dipole momentum for the calculation of the E-field. It 

delivers good results for the far-field or in sufficient distance to the emitting conductor. Conductor geometry is not 

considered (circular equivalent). 

 

● Biot-Savart Law  

 This method takes the geometry of the current-carrying conductor into account and delivers accurate results for the H-

field emission in the near field. The original equation does not take wave propagation into account (and fails in the far 

field).  

 The formula can be extended by a “retardation potential” such that wave propagation is also taken into account. So it 

delivers good results in near– and far-field. 
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Near Field, transition zone, Far Field 

 Far Field (Fraunhofer region) 

 distance > 4 l 

 wave propagation, effective power 

 Transition zone (Fresnel region) 

 0,2 l < distance < 4 l 

 “radiating Near Field” 

 Near Field (Rayleigh region) 

 distance < 0,2 l 

 inductive coupling, reactive power 

 Antenna center 
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The Magnetic Momentum method 

Estimating the emitted H-field independent of antenna geometry (far field) 
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The magnetic momentum 

● Heinrich Hertz developed the method of the magnetic momentum to calculate the H-field strength in space, in analog to 

the electric dipole momentum.  

● It delivers good results in the far field of an antenna 

● The magnetic momentum for a conductor loop of any shape is given by the alternating current times the area inside the 

loop  
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The magnetic momentum 

● Heinrich Hertz developed the method of the magnetic momentum to calculate the H-field strength in space, in analog to 

the electric dipole momentum.  

● It delivers good results in the far field of an antenna 

● The magnetic momentum for a conductor loop of any shape is given by the alternating current times the area inside the 

loop  
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- for a rectangular loop: - for a circular loop: 

…current density times velocity 

…direction from origin to space element 

  IrNAINmd  2

- In practice we find for the absolute of the momentum for a planar loop: 

  IblNAINmd 
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- More general, for arbitrary current distribution in the space volume: 

…space volume element    dddrrdV sin2
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- The relation of E-field to H-field gives the field impedance Z 

H-field expressed by the magnetic momentum 

● The H-field and the E-field (of a current-carrying conductor loop) in space can be derived from the magnetic momentum for 

any point in space in spherical coordinates by  

 

 

…radian wavelength, angular wavelength 
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Dedicated Antenna Orientations 

 Coaxial orientation 

- Center points of both antenna conductors are 

on an axis perpendicular to the antenna plane 

 Coplanar orientation 

- both antenna conductors are in the same plane 
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H-field and E-field for Coplanar Orientation 

● Coplanar orientation 

 the angle to the antenna axis is 90° 
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¬  the cosine term disappears and a simplified equation 
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Field Impedance Z for Coplanar Orientation 

 As E-field and H-field are non zero, the field impedance Z can be calculated from the magnitude of E and H: 
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Field Impedance Z for Coplanar Orientation 

 We can separate the real part and the imaginary part of Z: 
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Field Impedance Z for Coplanar Orientation 

 The magnitude of Z can be calculated from real and imaginary part: 
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H-field and E-field for Coaxial Orientation 

● Coaxial orientation 

 the angle to the antenna axis is zero 

 

 
 

  0sin

1cos0









page 16 

  









r
j

rr

m
H d 




2

2

24

2
0


  00 E



 the E-field component disappears and only the H-field component remains 

 

 consequently the field impedance Z becomes zero for coaxial orientation! 
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H-field comparison for  

coplanar and coaxial orientation 

● Coplanar orientation 

 complex field vector 

 

● Coaxial orientation 

 complex field vector 
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H-field comparison for  

coplanar and coaxial orientation 

Far field Near field 
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Decrease of the H-field with distance for coaxial and coplanar 

antenna orientation: 

● Near field 

 Coaxial & coplanar: H ~ 1/d³ 

● Far field 

 Coaxial: H ~ 1/d³ 

 Coplanar: H ~ 1/d1 

 

 

 l at 13,56 MHz = 22,124 m 
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Phase trace in the Near Field 

● Hertz also investigated the phase trace over distance. John Wheeler defined the “radiation sphere” r = l / 2   to 

define the near-field zone. 

 In the near field close to the conductor, the field is directly linked to current. 

 Wave propagation in the far field follows the relation c = l f. 
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H-field and E-field magnitude 
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H-field and E-field direction 
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Absolute and decibel values 

● Decibel values are logarithmic, relative to an absolute reference value. 

 Power scales 10 times the logarithm, H-field and E-field (like current and voltage) scale 20 

times the logarithm, as they are square-proportional to power. 
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e.g. for far field the related magnitude of the E-field is … 

Same calculation in decibel values… 

electromagnetic wave in the far field 
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“Wireless” power transmission 

 Power density can be derived with the Poynting vector concept 

 

 for field magnitudes in the far field this means 

 

 

 

 antenna directivity D is 

 

 For a loss-less antenna, directivity is equal to gain 

 

 

 e.g. an H-field emission limit of 60 dB(µA/m) in far field is related to a power density of… 
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“Contactless” power transmission 

● An ideal transformer is a good model for contactless power transmission 

 we neglect losses, resonances and inductances are linear and time-invariant 
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 using harmonic sine wave signals…        

 …where U and I are root-mean-square (rms) values of the signals u(t) and i(t) 

 

 the apparent power S of the primary circuit is given by…                      

(without secondary load current, this is just reactive) 
 

 for effective power transmission, we need to consider… 
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Summary Near Field, Far Field 
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● Electromagnetic wave 

 

 

 

● Limit of field region 

 
 

● Antenna diameter D0 

 

 

● Phase-shift in time 

 

● Spatial field vectors 
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Biot-Savart Law 

Calculating emitted alternating H-field close to the conductor 
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Law of Ampére 

● As a first step, Jean-Marie Ampére found a rule in 1820. Current in a conductor generates an H-field around the conductor. 

Using todays notation of units, his rule is… 

 12
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The Biot-Savart law 

● In Paris of 1840, Jean-Baptiste Biot and his assistant Felix Savart derived a law, which allows to calculate the H-field 

strength and direction from any conductor geometry and current, for any point in space. In integral form, it is… 

I1 

r 
 
 

ds 
 

dH 

Point in space 
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r
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34
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● For practical applications, the integral is problematic, as closed analytical solutions only exist for special cases 

(like for a circular conductor). 

● The original Biot-Savart law does not take wave propagation into account, so there is an error with increasing 

distance to the conductor. 
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Analytical formulas for specific geometries 

● For the H-field magnitude on the center axis of a 

“short cylindric coil” we find 

● For the H-field magnitude on the center axis of a 

rectangular, planar loop with side lengths a and b, we find 

Circular planar loop Rectangular planar conductor loop 
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 H..…Field strength at measurement point in space 

 I...…Antenna current (rms) 

 N..…number of turns 

 R.....(average) radius of coil 

 x......distance on center axis 

● Frame condition: planar (or short) coil (length << radius) and near-field (x << l/2) 
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Biot-Savart law for circular loops extended by retardation 

(valid estimation for near-field & far-field) 

      222
)sin(cos),,,( RSRSRSRRRSR zzyayxaxzyxr 

 The radius vector from source (S, loop center) to any point in space (R) is… 
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 HZ is especially useful for a coaxial reader – card coupling scenario 

 Magnitudes of the cartesian H-field components are… 
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H in Near Field and Far Field, coaxial and coplanar 

 

 

 The H-field decreases with distance to the 

emitting loop antenna in...  

 near-field: 

  coaxial & coplanar orientation: H~1/d3 

 

 far-field: 

coaxial:  H ~ 1/d3 

coplanar:  H ~ 1/d1 

   0)(),( tHtE    0)(),( tHtE

reactive power region effective power region 
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Two considerations using the Biot-Savart law 

● The Biot-Savart law gives accurate results for the Near Field and takes into account the antenna geometry. So we will use 

it to make two considerations, which are essential for size and shape of the loop antenna: 

 Homogeneity of the emitted H-field 

 Optimum (circular) antenna radius 

● The H-field can be described by a vector, which defines magnitude (strength) and direction of the field, for any point in 

space. So in cartesian coordinates there are 3 components, x, y, z. Of special interest is the case, where z is the loop 

antenna axis, and x = y = 0.  

● Moreover, close to the conductor loop contributions of both conductors are in opposite direction and same strength, so 

they cancel out. Considering HZ across a plane over the loop antenna, one can find a H-field magnitude decrease over the 

antenna center in short distance, and an increase in higher distance. In between there is a specific distance to the 

antenna, where the H-field is equal (homogenous). This distance is related to the antenna radius. 
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Optimum Loop Antenna radius 

● If we vary the loop antenna radius of the emitting antenna, for a fix distance to the receive antenna in a coaxial antenna 

arrangement, we can find a maximum of H-field. Of course, this maximum applies only for this fix distance. 

● So, there is an optimum loop antenna radius, related to the intended distance regarding H-field emission. We can calculate 

the derivative of the equation for H-field of circular antennas, to find this optimum radius: 
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● Zeros of this function are at  

● So, the optimum radius regarding RF power requirements for H-field emission is roughly 1,4 x the distance to the loop 

antenna center. 

● As a rule of thumb, the maximum distance should be roughly equal to the loop antenna diameter. 
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Electrical Elements 

Network elements 
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Overview of electrical elements 
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What is the Element Inductance? 

● Let us consider two current-carrying conductor loops, and time-variant current: 
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 C1..…circumference of 1st area 

 A1..…area enclosed by the 1st conductor 

 i1...…current in the 1st conductor 

   ....…normal vector to the area A1 

    ...…magnetic flux density vector B
1

n


 The current i1 in the first loop generates a magnetic flux  of the flux density B1. 

 A part of the primary flux penetrates the second conductor loop.   

 This generates a 2nd current, which compensates the part of the primary flux. 

  ArotBforsdPAdAnB
A C








   

2 2

22222  ..…magnetic vector potential A
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What is the Element Inductance? 

● All contributions to the flux across an area are directly proportional to the currents in the individual conductor loops, e.g.  
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 L with same indices means self-inductance. 

 L with different indices means mutual inductance. 

 

● Resolving the proportionality value, we find 

 

 For the mutual inductance… 

 

 

 For the self-inductance… 
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Examples: 

● Ferrite is a special material which has an increased relative permeability µR compared to free space (where µR = 1), 

the flux density B is increased.  

● Consequently, Inductance L is increased for a conductor loop near ferrite. 

 

 

 

● As metal allows ring currents (eddy currents) equal to a closed conductor loop, Inductance L is decreased for a 

conductor loop near metal. 

 

page 38 

sA

mV
whereHB R

7

00 104  



15,8 

0,00 15,8 15,8 

15,8 0,00 

8,0 

6,0 

8,0 

8,0 

6,0 

8,0 

Lecture Course at TU Graz provided by Dr. Michael Gebhart 

5,60 

What is the Element Inductance? 

● We can understand inductance also as “inertia of current”, it is the time-variant “resistance” which the conductor offers to a 

time-variant current.  

● Inductance results from the relation of time-variant magnetic flux and current to 
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  N…or for the coil flux (N turns) 

● All the magnetic flux  generated by the current i is directly proportional to the actual value of i. The proportional value is 

inductance L: 
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● For harmonic sine-wave signals (considering no offset or transient condition) we can express the derivation by amplitudes, 

for complex network calculations: 

…where j expresses the 90 ° phase-shift LXforjXIU LL 
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Example: Mutual inductance of circular coils 

● For the simple geometry of circular coils, an exact calculation is possible: 

 

 

 

 

 

 

 

 

● Moreover, for coaxial coil orientation (same axis), this simplifies to 
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Coupling factor 

● In network calculation, the coupling factor k represents the connection of a coil arrangement. 

● It is a pure geometry factor, as the other parameters cancel out.  

● It results from the relation of mutual inductance M between two coils, and the inductance L of the two coils: 

 

 

 

 

● For example, resolving the equation for circular coils in coaxial orientation, we find… 
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Representing Coupling & Transformation 

● Coupled inductances can be represented by an equivalent T – structure. 
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L1 L2 ZTL

ZIN k, M

T ZTL

ZIN
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L  - TM1 T L  -TM2
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21 LL

M
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k.....coupling 

M....mutual inductance 
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1
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L
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T.....Transformation 

Note: ideal coupling k = 1 assumed 
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Measurement of mutual inductance and coupling 

● An exact calculation from coil geometry is not always possible, sometimes a measurement is easier to do (also to check a 

calculation). One option uses an LCR meter and gives an approximation for mutual inductance: 
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 Ls.......strey inductance 

 LH.......main inductance 

1. Open measurement: 

 The 1st coil is connected to the LCR-meter, the 2nd coil 

remains open.  

HHMEAS LLLL  s
  sss LLLLL HMEAS 2// 

 The strey factor is 
OPEN

SHORT

L

L
s and the coupling factor is OPENSHORT LLk  11 2s

 Mutual inductance M is given by 

2. Short measurement: 

 The 1st coil is connected to the instrument, 2nd coil is 

shorted. Measure L @ 13,56 MHz 
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Measurement of coupling (alternative) 

● Another practical method to measure the coupling factor k results from a simple consideration for a non-ideal transformer: 
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● If we apply AC voltage on a primary coil and measure induced voltage on a secondary coil, coupling can be derived from 

2

1

1

2
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U
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Kk F 

 k..........coupling factor 

 KF........correction factor (< 1)  

 U1.......primary coil voltage 

 U2........secondary coil voltage 

 L1........Inductance, primary coil 

 L2........Inductance, secondary coil 

 Main frame condition is, that the current in the 2nd coil shall be negligible, to avoid a voltage drop on the coil resistance 

and to avoid any loading on the 1st coil. The best is, to do such measurement with an active probe, or a voltage follower 

with low input cap. The effect of a parasitic cap can be taken into account by a correction factor. 

PROBEGES CCC  2

● The same concept can, of course, also be used to simulate mutual inductance in circuit simulators (e.g. Spice). 

It is, however, an approximation only. 
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What is the element Inductance? 

● Inductance (L) is a property of conductors and coils, relating time-variant voltages to currents. 
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● Inductance also is an energy (W) storage and thus can be defined 
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● Complex network calculation (without pre-charge) 
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What is the element Capacitance? 

● Capacitance (C) is the ability of a body to store an electrical charge (q). Typically two conductive plates of area A in 

distance d store the charge +q and –q. Capacitance is then given by 
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● Capacitance also is an energy (W) storage and thus can be defined 

● Complex network calculation (without pre-charge) 
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What is the element Resistance? 

● Resistance (R) of an electric conductor represents the loss of effective power, when the conductor carries current. 

Conductor materials have a specific conductance s in S/m. Resistance is given by 

page 47 

● Resistance also means loss power (P) 

● Complex network calculation (there cannot be any pre-charge) 
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Resonance circuits – serial resonance 
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Resonance circuits – parallel resonance 

page 49 

 Current resonance 

 Trap circuit (“Sperrkreis”) 
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Coupling case 1: Open Loop 

● Induced voltage is related to primary H-field 

● No current in 2nd loop, so no H-field emission 
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Maxwells Equations, integral form 

 Michael Faraday, Law of Induction (1831) 
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Harmonic sine-wave flux (quasi-stationary) 
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Ref.: 13th International Conference on Telecommunications (ConTEL), Graz, Austria 
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Coupling case 2: Closed Loop 

● Rule of Lenz: 

● Current in 2nd loop generates H-field… 

● …that cancels out primary H-field (-180 °) at the position of the 2nd coil 

page 51 

  D
t

JHrot





1

  B
t

Erot





2

  03 Bdiv


  Ddiv


4

Maxwells equations, differential form 

● A closed loop of ideal conductor shorts induced voltage to zero. 

● This current in the 2nd loop is shifted by – 90 ° to an induced voltage (which is – 90 ° 

shifted to primary current), so in total the 2nd current is – 180 ° shifted versus the primary 

current. 

● A resistance in series to the inductance allows some (induced) voltage drop – the 

remaining voltage is shorted and compensates (partly) the primary H-field at the second 

position. 
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Coupling case 3: Resonant loop antennas 

● Current in 2nd loop is effective and reactive… 

● Phase-shift is different from 180 °… 

● Field does not cancel out, 

● Amplitude of 2nd H-field can even exceed the primary field 
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 Resonance at carrier frequency!  Resonance at carrier frequency! 
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Electrical Components 

Practical realization, how to measure the main property, and some 

dependencies 
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Electrical Components 

● Components are the practical implementation of network elements. Main properties (elements) are associated with 

parasitic properties: 
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Resistor Capacitor Inductor 

● Surface mounted devices (SMD) have the least (minimum) parasitics 

● Electrical dependencies 

 Frequency dependency (e.g. dispersion) 

 Power dependency (e.g. saturation), … 

● Ambient (physical) dependencies 

 Temperature, humidity (e.g. aging), pressure, … 

Practical hint: Try to characterize under operating conditions! 
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Resistor 

● SMD resistors offer an excellent representation of the element resistance. 

● Values are available in logarithmic distance for a decade.  

● E series resistor values specified in ISO 60063: 

 E3, E6, E12, E24, E48, E96 and E192. 

● Individual values k are calculated by 

where n specifies the number of elements per decade m. 

 e.g. E12:  

● Package sizes is specified in inches 

 e.g.  1206, 0805, 0603, 0402, 0201 
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means 2,0 mm long and 1,25 mm wide 

n mk 10

2.810...,,5.110,2.110,110 12 1012 212 112 0 

Package Length Width

mm mm

1206 3,2 1,6

.0805 2 1,25

.0603 1,6 0,8

.0402 1 0,7

.0201 0,5 0,3
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Capacitor 

● Capacitors can be a similar good representation of the element capacitance, if the dielectric material is chosen right.   

COG or NP0 for SMD are good HF Caps. 

● The Electronics Industries Alliance (EIA) has standardized 3 capacitor classes: 

 Class 1: HF capacitors (typically ceramic) with high parameter stability 

 Class 2: High volume efficiency capacitors (for buffers,…) 

 Class 3: Volume efficiency ceramic caps (typ. – 22…+ 56 % cap over 10...55 °C) 

 Class 4: Semiconductor caps 

● Class 1 ceramic capacitors are classified for temperature dependency in a frequency range  

 IEC/EN 60384-8/24 means 2-digit code, EIA RS-198 means 3 digit code 

 NP0 means zero gradient and +/-15 x 106 / K tolerance. EIA code is C0G, IEC/EN code is C0 

● The EIA ceased operations in 2011, the Electronic Components Industry Association (ECIA) will continue EIA standards 

maintenance. 
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Capacitor 
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Inductor 

● Inductors are critical / problematic components. 

● Wire-wound coil inductors preferred to chip inductors (more stable properties) 
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● Attention to the current under operating conditions (e.g. 100 mW ... 1 W RF power for matching networks) 

● Losses due to parasitic DC resistance (e.g. 0,5 … 5 W for 1 µH in 0805 package) – reduces the Q-factor! 

● Attention to frequency and power dependency of inductance 

● Attention to thermal stress 

● Take care of coupling in layout 
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How to characterize impedance at HF  

● An extended setup for network analysis is used to characterize impedance over frequency and voltage - also in the 

operating point and up to destruction levels.  
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● The voltage on the DUT is calculated with a voltage divider (50 Ohm 

source and measured load impedance), from a previously measured 

output voltage to 50 Ohms. 
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Smith Chart 

● The Smith chart was developed in 1939 by Phillip Smith. 

● Background is impedance measurement at HF frequencies. 

This can be done by measuring the reflection by standing 

wave measurements. This is, how a network analyzer 

works. It makes sense, to use a display, which allows to 

read out impedance from measured reflection. 

● The Smith chart is in the plane of the reflection coefficient  

and represents a transformation of the complex impedance 

Z to .  

● It allows geometrical calculations, e.g. for impedance 

matching. 
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Example – Chip Inductor (560 nH) 

● In order to possibly extract an equivalent circuit of the inductor, a frequency sweep of the inductance was made at  

4 different power levels.  

page 61 



15,8 

0,00 15,8 15,8 

15,8 0,00 

8,0 

6,0 

8,0 

8,0 

6,0 

8,0 

Lecture Course at TU Graz provided by Dr. Michael Gebhart 

5,60 

Measurement of the matching impedance  
Smith Chart frequency sweep for power steps 
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Voltage @ 13,56 MHz in Matching NW is < 0,01V(RMS) 

Frequency Sweep @ - 45 dBm

13,56 MHz
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Measurement of the matching impedance  
Smith Chart frequency sweep for power steps 
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Voltage @ 13,56 MHz in Matching NW is 0,133 V(RMS) = 0,934 V(pp) 

Frequency Sweep @ - 45 dBm

Frequency Sweep @ - 30 dBm

Frequency Sweep @ - 10 dBm

13,56 MHz
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Measurement of the matching impedance  
Smith Chart frequency sweep for power steps 
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Frequency Sweep @ - 45 dBm

Frequency Sweep @ - 30 dBm

Frequency Sweep @ - 10 dBm

Frequency Sweep @ 0 dBm

13,56 MHz

Voltage @ 13,56 MHz in Matching NW is 2,5 V(RMS) = 7,08 V(pp) 
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Measurement of the matching impedance  
Smith Chart frequency sweep for power steps 
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Frequency Sweep @ - 45 dBm

Frequency Sweep @ - 30 dBm

Frequency Sweep @ - 10 dBm

Frequency Sweep @ 0 dBm

13,56 MHz

Power Sweep @ 13,56 MHz
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Measurement of the matching impedance  
Smith Chart power sweep @ 13,56 MHz 
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Impedance in operation 

Impedance in measurement 

Power level for permanent damage reached 

● Impedance in operation … 28,3 + j 23,9  @ 3,52 V(RMS) = 9,95 V(pp) 

● Impedance in measurement… 16,36 – j 5,43  @ 0,13 V(RMS) = 0,37 V(pp) 
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Emitted equivalent homogenous H-field at CalCoil in 10 mm 
Power sweep into network with (left) and without (right) EMC inductor 
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Impedance with EMC 

Rp ~ 17 … 88  

Cp ~ 230 … - 220 pF 

Impedance without EMC 

Rp ~ 860  

Cp ~ 113 pF 

Almost linear increase of H with sqrt (RF Power) 

P = U² Rp ~ 640 mW P = U² Rp ~ 131 mW 

No power dependency in the remaining network, only caused by the EMC inductor 

Same H-field emitted at 131 mW RF power and at 640 mW RF power fed. 

● Impedance, RF power & H-Field 
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Some Statistics 

Practical summary 
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Statistics summary 

● A number of components may have a Gaussian Distribution of values. 

● The Gaussian Distribution is given by the Distribution Function… 
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Statistics summary 

● Such a Gaussian Distribution is completely determined by… 
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in general for random sampling 

● The Standard Deviation s(x) is the square root of the variance. 

● Certain Confidence Intervals contain samples with a certain probability… 
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Correlation 

● The (Pearson product-moment) correlation coefficient rxy is a linear measure for the 

correlation of two random variables x, y. 

● r is in the range of  -1 … 0 … +1  
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Definition in general for  random sampling 

● For rxy = 1 we can calculate y = ax + b 

● Covariance is defined by… 
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Adding up Gaussian Distributions 

● For two Gaussian distributions for x and y, the means can be added 

 

 

● Standard deviations cannot just be added up – variances are added! 

● For uncorrelated distributions, the resulting variance is given by… 

 

 

● This is indeed a specific case of the sum of correlated distributions 

 

 

● For more than two random variables, extensions can be made, using the covariance matrix. 
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Hinweise – Notizen  

Thank you for your 

Audience! 

Please feel free to ask questions... 
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Questions for self-evaluation 

● Remember the two dedicated loop antenna orientations: Coaxial and coplanar orientation. Talk about them, explain, how 

the H-field (and E-field) decrease with distance to the emitting antenna, for near-field and far-field.  

● Why can we say, in the physical near-field mainly the H-field is relevant? Where does electromagnetic wave transmission 

actually start? What does “near-field” actually mean, and in which distance to the current-carrying conductor is it located? 

● Which two models can we usually use, to estimate the H-field strength in distance to a loop antenna? Which pro´s and 

con´s does each of the methods have? 

● Why do we use resonance circuits in contactless communication? What is the resonance frequency, what is the Q-factor, 

and how can we calculate it? 

● What is the difference between electrical network elements and components? Besides the main electrical property, which 

parasitic properties are there, and which dependencies can exist under real-life operating conditions? 

● How can we basically measure, or verify, if a component has the desired properties? 
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