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Content 

● What is a contactless transponder? 

 Relevant standards for a contactless card 

 Functional blocks 

 Main circuits (simplified) 

● Transponder chip impedance measurement 

 Setup 

 Typical traces for equivalent RP, CP over RF voltage 

 Relation to HMIN based on a linear equivalent circuit model 

● Simulation of 3 operational states in communication 

● Stationary “Card Loading” effect 

● Transponder load modulation estimation 

● Examples 
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What is a “Smart Label”? 

● The contactless transponder is the electrically functional part. 

● “Label” refers to object-oriented tagging (e.g. logistics). 
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… on substrate, 

e.g. PVC-foil ... 
Antenna, printed,  

etched or embedded wire ... 

Paper label 

 containing RFID technology 

and a chip   

assembled to it 
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What is a “Smart Card”? 

● ISO/IEC14443.........The Contactless Proximity Air Interface for person-related applications was          

standardized 2 decades ago.  

● Applications in Government (e-Passports, driver license, health card...), Payment (Contactless Credit Cards), Public 

Transport (Ticketing), Secure Access Control, etc. are successfully deployed. 

● The battery-less, field-proven secure chip technology did migrate into objects e.g. SD-Cards, watches, USB-Sticks, which 

require small antennas. This requires more accurate characterization and production tolerance consideration. 
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● Related ISO/IEC Standards  

 7810...........Card geometry (e.g. ID-1 format) and physical properties 

 7811-3/-3...Embossing (letters raised in relief) 

 7811...........magnetic stripe cards 

 7812...........optical character recognition cards 

 7813...........bank cards 

 7816...........contact cards with ICs 

 10373.........test methods 
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Introducing Contactless Proximity systems 

● The Proximity coupling system operates in the 13,56 MHz world-wide license-free band in the near field (~ 10 cm range). 

Contactless supply power and communication interface are provided by a reader to a transponder. 
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● These systems „live“ from intentional de-tuning and are not 50 Ohm impedance 

matched between antenna and chip! 
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Introducing Contactless Proximity systems 

● We can differentiate analog part and digital part. 

● The analog part is relevant for the air interface and offers required operating conditions to the digital part. 
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Transponder Card, Smart Label

Transponder

Chip

Loop antenna

Analogue Part

Clock Extraction

Voltage regulator

Modulator,

Demodulator

Digital part

Coder,

Decoder

Framing

CRC

Access

Control

CPU

Data

Memory

● Analog Part: 

 Over-voltage protection 

 Capacitance for resonant antenna circuit 

 Clock generation (from 13,56 MHz carrier) 

 Voltage regulator (limiter) 

 Demodulator for reader commands 

 Modulator for load modulation 

● Digital Part: 

 Decoder (recognizes reader commands), 

 Encoder (for data transfer transponder  reader), 

 Framing for data transmission (buffer...), 

 Error detection / protection (depends on protocol, e.g. CRC), 

 Access control (also rights, encryption,...), 

 Program and / or data memory 
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Typical Frontend –  

Supply voltage control (for the digital part) 
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Typical Frontend –  

Clock generation 

page 8 

● The reader carrier period 

is the time reference of 

communication. 

● So the clock can be 

directly extracted from the 

RF carrier frequency. 

● For lower clock 

frequencies (< 13,6 MHz) 

only a comparator and 

divisor stages are 

required. For higher clock 

frequencies e.g. a PLL 

may be used. 
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Typical Frontend –  

Demodulator 
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● The reader carrier period 

is the time reference of 
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frequencies (< 13,6 MHz) 
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divisor stages are 

required. For higher clock 

frequencies e.g. a PLL 
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Typical Frontend –  

Modulator 
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● Modulator can be a shunt 

resistor (Q-shift) or a 

capacitor (fRES shift). 

● Resistor can short antenna 

voltage ( clock 

extraction difficult) or draw 

more current behind the 

rectifier (our example). 
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Transponder equivalent electrical circuit 

● From system perspective, analogue RF performance of a transponder can be considered using a simplified EQC: 

● Chip 

 CC.....(equivalent) chip capacitance, voltage (& state) dependent! 

 RC.....(equivalent) chip resistance, voltage (& state) dependent! 

● Assembly 

 CAS....assembly capacitance 

 RAS....assembly serial resistance 

● Antenna 

 LA......(equivalent) antenna inductance 

 RA.....(equivalent) parallel antenna resistance (losses) 

 CA....(equivalent) parallel antenna capacitance 

● RF system requirements for a transponder are mainly…. 

 Minimum H-field for card operation, HMIN 

 Load modulation side band amplitude, LMA 
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Chip input impedance characterization @ 13,56 MHz  

● The extended setup for network analysis is used to characterize impedance over frequency and 

voltage – also in the operating point and up to destruction levels.  
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● The voltage on the DUT is calculated with a voltage divider (50 Ohm 
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Equivalent Chip admittance measurement 

● Equivalent circuit values for a simple, linear model can be extracted. 

● We measure the real part (parallel resistance, RC) and imaginary part (CC).  

 

 

 

 

 

 

 

 

 

● This allows to verify some main points (e.g. power-on reset, start of chip operation, dependency on chip settings like clock 

/ current source setting…) 

● Note: It does not include any state transition or chip operation! (obverse and reverse voltage sweep can be done) 
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Antenna and assembly technology overview  
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 Antenna Technologies 

 Embedded Wire Antenna 

 Etched Antenna 

 Printed Antenna 

 Galvano Antenna 

 Crimping 

 Welding 

 Soldering (not Alu) 

 Conductive Glueing 

 Assembly Technology 

 Conductor materials: Copper, aluminum, conductive paste (e.g. silver ink) 

 Chip packages:  Module (8 x 5 mm), Flip-Chip, Strap, bumped wafer 
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Loop antenna 

● The loop antenna is a distributed component with 

inductance (L) as main element and capacitance (C) and 

resistance (R) as parasitic network elements. 

● For simulation it must be represented by an equivalent 

circuit network of lumped elements. Over a wide frequency 

range this can be a loose coupled reactive ladder network of 

resonance circuits - it has several resonances in frequency 

domain. 

● At 13,56 MHz carrier frequency we use the fundamental 

(lowest) resonance. So we can simplify the equivalent circuit 

e.g. to a parallel resonance circuit (since losses are mainly 

determined by chip current consumption in Proximity 

Systems). 

 Note: This is a narrow-band approximation only! 
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RF System aspects of a contactless transponder 

● This simplified linear analytical model can be used to consider some aspects of contactless transponder behaviour at the 

RF air interface: 

 Energy perspective, HMIN 

 Energy perspective, HMAX 

 „Card loading“ to the reader 

 Transponder load modulation (LMA) and ISO/IEC side band amplitudes 

● This can be used to relate contact-based chip & antenna properties to the RF system behaviour, which is required by the 

standard. 

 

 

 

 

● Note: Considerations in this context relate to the Proximity base standard, ISO/IEC14443, and the Proximity test standard, 

ISO/IEC10373-6.  
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Transponder properties – Energy (HMIN) 

● The simple time-independent equivalent circuit model allows to consider the H-field  
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● Finally, we substitute UI and re-arrange the function to express the 

required H-field by chip, antenna and system parameters: 
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HMIN as function of chip and antenna properties 

 Evaluating the analytical equation for HMIN allows to consider how chip and 

antenna properties influence contactless transponder RF performance.  

 As there are production tolerances, performance over resonance 

frequency is important. 

 As standard compliance requires all samples to achieve an HMIN, the 

allowable resonance frequency range can be determined. 
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HMIN as function of chip and antenna properties 

 Evaluating the analytical equation for HMIN allows to consider how chip and 

antenna properties influence contactless transponder RF performance.  
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HMIN as function of chip and antenna properties 
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Transponder analog front-end 

● Analogue Design simulation environment (e.g. CADENCE) is used to simulate functional blocks of a Proximity transponder 

chip analogue front-end. 

● Hierarchical simulation model, based on semiconductor process component models (includes parasitics & dependencies). 

● As power supply and communication share one common interface, the resonant antenna circuit, 3 functional states are 

mainly investigated, for the power requirement (HMIN) analysis: 

 Command reception - operation (e.g. r/w memory access) - load modulation 
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3 functional states for the transponder 
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Thermal consideration and HMAX 

● To provide constant supply to the digital part in chip, a shunt regulator usually limits the chip voltage for an H-field > HMIN.  

● The antenna basically acts as a current source then, and it is possible to give a simple conversion ratio between H-field at 

transponder, and the (effective) current provided to the chip. 

● In the analytical formula, this is expressed by RT, which is voltage dependent. So we can re-arrange our formula, to 

calculate RT out of the frame conditions. 

 

 

 

 

● This is useful to estimate, how much current will be available for the chip, and it also allows to calculate the maximum 

thermal power dissipation for a card.  
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Transponder properties – „Card Loading“ 

● The inductive coupling of the transponder to the reader resonant antenna circuit (both loop antennas carry currents) have 

an impact: 

 mutual inductance – reader antenna resonance is shifted 

 transponder draws current – reader antenna Q-factor is decreased 

 a 2nd resonance may be introduced in the transmission function... 

● To consider effects, the contactless transformer model can be modified into a galvanically connected equivalent circuit, 

which includes the „transformed transponder impedance“ ZT´. 
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Transponder properties – „Card Loading“ 

● The Proximity standard defines „card loading“ just over the aspect of reduction of the reader H-field: 

 

 
 

● The transformed transponder impedance is given by... 

 

 

 

 

 
 

● So the „card loading factor“ is given by 
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Maximum allowable Card Loading 

● Card loading refers to a decrease of emitted H-field strength due to proximity coupling of the resonant reader antenna to a 

transponder card. The reader minimum H-field emission is tested under certain loaded conditions. 

● So the test standard specifies a test case for cards, the maximum allowable card loading. It is specified relative to a so-

called Reference PICC, for resonance at carrier frequency and a high QT-factor, specified as 6 VDC @ HMIN, for antenna 

size class 1. 

● This means, transponder cards will pass, if QT is below the value for the Ref. PICC at HSMIN, considering similar antenna 

size (this is general and allows to vary L/C). 
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REFERENCE PICC MEASUREMENT FOR TRANSPONDER SIZE CLASSES 

Class
*
 PCD

*
 HSMIN

* 
LA

** 
UDC

* 
R2typ

** 
H

** QTLIM
*** 

  A/m(rms) µH VDC  %  

1 1 1.5 2.29 6.0 975 6.9 3.0 

2 1 1.5 2.38 4.5 1191 3.1 3.3 

3 1 1.5 2.38 4.5 1308 3.2 3.6 

4 2 2.0 2.36 4.5 1074 7.2 3.0 

5 2 2.5 2.36 4.5 1092 4.7 3.1 

6 2 4.5 2.25 4.5 839 2.1 2.5 
*)

 defined, 
**)

 measured, 
***)

 calculated from measurement 

 
HNA

LU
R AC

CRT

0

@


 

- for fRES = fCAR we get 

SMINC

CR
TLIM

NAHf

U
Q

02 


- which means for QT 
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Transponder properties – Load Modulation 

● The Transponder transmits data via impedance change / load modulation 

● This can be seen as dynamic switch of the „Loading“ (fRES or QT can be varied) 
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Subcarrier fc / 16 = 847,5 kHz

Data stream in line coding  (e.g. manchester)

AND
modulated (on/off switched) Subcarrier

RF-carrier with fc = 13,56 MHz (sine wave)

Load modulation

H-field carrier (13,56 MHz) with Card Loadmodulation

k

0 Hz
- fdata + fdata frequency

0 Hz
- 848 kHz + 848 kHz

0 Hz

13.56 MHz

14.41 MHz12.71 MHz
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Transponder quality factor QT 

● 3 ways to extract the quality factor: 

 Measurement of the time constant  

t of the rising slope & calculate QT using  

 

                                  we name this QT here “QMEAS”  
 

 Calculation based on EQC, measuring the parallel resistance Ric // RQLim 

 

 

 

 

    RIC // RQLim is measured with Impedance analyzer (chip impedance measurement)  this QT is named “QNWA” 

● Alternative: Calculate RIC of transponder chip measuring the time constant twithout RQLim and calculate  QT  with 

component values of RQLim  “QCALC” 
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Consistency Check: Determination of QT, 3 ways  

● QMEAS 

 

 

 

 

 

● QNWA 

 

 

 

 

● QCALC 

 (i) calculate RIC by measuring t without RQLim  

 (ii) calculate QT with component value of RQLim 
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Consistency Check: Determination of QT, 3 ways  

● QMEAS 

 

 

 

 

 

● QNWA 

 

 

 

 

● QCALC 

 (i) calculate RIC by measuring t without RQLim  

 (ii) calculate QT with component value of RQLim 
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 (i) calculate RIC by measuring t without RQLim  
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Modulation “Strength” 

● 2 effects reduce the ideally achievable load modulation: 
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Modulation strength =  

Mpp 

 Uic 

Modulation Amplitude Mpp  Uic,lma 
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Modulation strength of chip input voltage (848 kHz)
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Class 6● if antenna voltage  0 for closed shunt ( QT = QM  0) 

● if  signal time constant < resonance time constant. 
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Estimation of the load modulation  
based on empirical measurement data analysis 

● Empirical formula for ISO/ IEC 14443-2 side band amplitude estimation (ideal case) 
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T

T

Q

QHkSBA









SBAV(p) ISO/IEC antenna arrangement sideband amplitudes in V(peak) 

k  Coupling coefficient between sense coil A and transponder antenna 

H Magnetic field strength in DUT position in A/m (rms) 

QT Quality factor of the transponder (includes antenna and chip) 

QT Difference between the modulated and the unmodulated QT 

RES Angular resonance frequency of the transponder in s-1 

CAR Angular Frequency of the modulated sideband in s-1, e.g. 2(13,56 MHz ± 847,5 kHz) 

 

Note: This empirical model is most accurate for QT < 25, and Q = QT if modulation is ideal (QM = 0) 
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ISO/IEC sideband amplitudes over transponder QT 
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● So, it is a valid approach, to estimate 

transponder load modulation based 

on the equivalent transponder Q-

factor! 

● There is an empirical formula to 

estimate the side band amplitudes 

for the ISO/IEC test environment. 

● Load modulation is proportional to 

QT, up to a certain limit. 
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ISO/IEC SBA measurement for Class 1 antenna 
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ISO/IEC SBA measurement for Class 2 antenna 
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ISO/IEC SBA measurement for Class 3 antenna 
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QT and ISO/IEC SBA as function of H-field strength 
Comparison model versus measurement  
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Minimum loop antenna area limit for ISO/IEC SBA compliance 
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Impossible with passive 

antenna concept 

Postulated lower  

border for  

antenna size 

Passive 14443 

transponders 

Battery powered 

NFC devices 

 Constraints:  
– H = 1,5 A/m (rms) 

– only PCD 1 and  

   class 1-3 SBA limits 

Measured data 

Measured data 
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Example 1: Contactless transponder chip impedance 

● We can distinguish 3 phases during communication: 

 Phase 1: Communication reader to card, 100 % AM modulation of carrier H-field 

 Phase 2: Un-modulated carrier 

 Phase 3: Transponder load modulation. 

● In good contactless chip design, energy and not communication is the limiting factor. This allows to calculate HMIN as 

function of resonance frequency and other parameters. 

 

 

 

 

● A remaining problem is the resonance frequency measurement… 

 mutual inductance, and 

 chip voltage level 

● …must be taken into account properly. 
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1
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2
1
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Parameter Meaning Unit Value 

fCAR carrier frequency MHz 13.56 

RC0 eq. parallel chip resistance 

(measured at 0.3 Vrms) 

Ohm 14000 

RC1 eq. parallel chip resistance at 

start of operation (at 2.7 Vrms) 

Ohm 1500 

UMIN voltage for start of chip 

operation 

V(rms) 2.7 

LF inductance of fixture (Cal. Coil) Henry 2 x 10
-7

 

LS inductance of one Sense Coil Henry 4.2 x 10-7 

LA inductance of card antenna Henry 1.86 x 10-6 

kAF coupling factor antenna - fixture --- 0.115 

kAS coupling factor Sense Coil - 

antenna 

--- 0.22 

RSA eq. serial antenna resistance 

(measured at 13.56 MHz) 

Ohm 1.7 

A antenna area m² 0.0014 

N loop antenna turns --- 3.8 
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Resonance frequency measurement (1)  

As instruments usually do not allow sufficiently high output levels to measure the 

resonance frequency in the operating range (fres and Q vary), one option is to 

measure at low H-fields (where the traces are flat and voltage-independent) and to 

re-calculate values for operating conditions, based on the known impedance trace. 

 

● 2 aspects need to be taken into account: 

 

1. The well-know Thomson equation (for parallel resonance circuits)... 

 

...needs to be adjusted to a more appropriate equivalent circuit of the transponder.... 
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START 10 MHz STOP 20 MHz

1 OHMREF 4 OHMCH1 Rs

15 dBm     2,0540 Ohm     16,6250 MHz

10 dBm     2,8075 Ohm     16,8375 MHz

5 dBm     4,4739 Ohm     16,9000 MHz

0 dBm     6,6344 Ohm      16,9875 MHz

- 5 dBm     7,3512 Ohm     17,3375 MHz

- 10 dBm     7,9983 Ohm     17,4750 MHz

- 20 dBm     8,0005 Ohm     17,4625 MHz
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Resonance frequency (2)  

2. The mutual inductance due to close coupling to other coils in the specified test setup needs to be taken into account. 

One option is, to measure the resonance frequency at low H-field in the voltage-independent region. The natural frequency 

(without de-tuning by the measurement coil) can be calculated according to 

 

 

 

Then we can calculate the resonance frequency in the operating point knowing the C... 

 

 

 

…. and we can even calculate the de-tuned resonance frequency in the measurement setup 
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Minimum H-field over resonance frequency  

With these corrections, the trace of minimum H-field strength for transponder operation can be calculated accurately from 

chip impedance trace and loop antenna parameters. 

 

● It is also possible to calculate min. and max.  

   allowable resonance frequency to achieve certain HMIN: 

 

 

 

 

 

 

This allows to consider tolerances for chip and antenna parameters, or e.g. to optimize operating conditions for the chip, like 

clock frequency. 
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Chip current consideration  

Finally, this allows also to consider the available internal Chip current: 
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● Here we get 

 IDC = 1,38 mA at the resonance frequency limits 

 IDC = 2,24 mA for optimum (resonance = carrier) 

 

 calculated for 0,9 A/m and voltage drop of 0,9 V. 

 

 antenna power loss is 5,9 – 10,6 % (etched antenna). 
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Conclusions 

● The way to relate chip input impedance to the contactless card system behaviour was discussed in detail and applied 

for an ISO/IEC14443A compatible transponder chip according to the measurement methods of ISO/IEC10373-6. 

● As practical example, the H-field required for operation was measured as function of resonance frequency. These 

measurements show a good fit to the quasi-static calculation model based on RP – CP for the point of start of operation, for 

the investigated chip. This closes the loop to applications and proofs the concept. 
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Example 2: Contactless transponder chip impedance 

● A simplified equivalent functional circuit for the SmartCard chip is given: 

 

 

 

 

 

 

 

 The CPU clock can be configured by the user according to application requirements. 

 This means, the (expected) required current for operation is set accordingly. 

 To prevent chip reset, there is a voltage sensor which can stop the clock (and so the current consumption), if the digital 

supply voltage drops too much. 

 This behaviour can be seen well in the traces for equivalent chip impedance, and allows the identification of specific 

operating points. 
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● One Engineering Chip sample was measured 10 times (clock settings 4 ... 61 MHz). 

 A part of the RP trace is shown for detailed interpretation. 

 The LDR demodulator (on antenna voltage) is principally always functional.  

After the power on reset and some switching of security logic (and non intended limiter behaviour) the voltage point for CPU 

start can be identified. The chip will operate at 106 kbit/s from this point on (HMIN @ 106 is independent of the clock setting). 
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 4 MHz ~ 1,9 mA 

 61 MHz ~ 6,4 mA 

 POR, LDR DEM OK 

 CPU start, ~ 106 kbit/s OK 

 HDR DEM active 

 The HDR demodulator gets active if the 1st limiter has 

sufficient current. So the voltage point for start of operation 

at HDR depends on clock setting.  

 RP and voltage are dependent on clock setting! 

 Out of the diagram, a practical assumption for chip current 

consumtion is 1,6 + 0,08 mA/MHz. 

 An estimation for the voltage point at 18 MHz CPU is 3,2 

V(rms). 

 

 

Example 2: Contactless transponder chip impedance 
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● The analytical model allows us to relate chip impedance to contactless transponder behaviour. One critical question is, 

how the chip power consumption changes during the modulation pause. This may require to take a duty cycle into account. 

In principle, HMIN can be calculated with chip and antenna parameters and fits to contactless measurement results on the 

ISO/IEC test bench. 

 

 

 

 

 

 

 

 

 

● HMIN is 0,42 A/m for 15 MHz and 0,77 A/m for 18 MHz – measured and calculated. 
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Example 2: Contactless transponder chip impedance 
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 Data used for calculation: 

 Antenna (Class 1 testboard) 

• LA........3,08 µH 

• N..........4 turns 

• outline 74 x 45 mm 

• AEFF.....0,0034 m² 

 Chip (CD081) 

• (DEM100) 

• RP........1,5 kOhm 

• UMIN......2,3 V(rms) 

 

 System (ISO/IEC14443) 

• fCAR......13,56 MHz 

• µ0.........4  10 - 7 

• fRES......15 - 18 MHz 

• FDUTY....1,05 
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 In addition, we see the typical trace for HMIN over resonance frequency (here for a different chip), for LDR and HDR. 

 Note that resonance frequency is measured under low H-field conditions in this case – the minimum is not centered at 

13,56 MHz carrier frequency. 

 More in detail, the minimum for 212 kbit/s (HDR demodulator) is shifted against the minimum for 106 kbit/s (LDR)! 
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Example 2: Contactless transponder chip impedance 
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● It is also instructive, to see the influence of limiter voltage and current consumption on the ISO/IEC side band amplitudes 

over the H-field range (for a fixed fRES). 

● Higher ULIM increases SBA, but only if the required current is already available from H-field (means increase of QT). 

● Less current consumption helps in the critical, low H-field region (e.g. clock) 
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Example 2: Contactless transponder chip impedance 

ISO/IEC10373-6 Sideband levels CD081 (V1A) on half-size Testboard Antenna

Resonance frequency 14.5 MHz (loaded), Limiter low, CPU 18 MHz
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ISO/IEC10373-6 Sideband levels CD081 (V1A) on half-size Testboard Antenna

Resonance frequency 14.5 MHz (loaded), Limiter high, CPU 18 MHz
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● Example: A design matrix of 5 different embedded wire antennas was fabricated in normal card production flow. 

● Varied parameters were 

 wire pitch (distance between turns) 

 number of turns 

   for equal outline (size). 

● Antenna equivalent circuit parameters were measured for 

 air coils, and  

 coils on ferrite foil. 

 

 

 

● Conclusions: Inductance increase due to ferrite. The relative increase is constant. So the inductance for coils on ferrite can 

be calculated by the inductance for the air coil times a factor kL. 

● In addition, there is a loss increase due to losses in ferrite foil. 
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Example 3: Contactless sticker antenna design matrix 

ANTENNA GEOMETRY DATA 

No 1 No 2 No 3 No 4 No 5 

outline mm 40 x 20 

wire diam. µm 100 

pitch mm 0.2 0.5 0.6 0.4 0.2 

turns 4 4 5 5 5 

Equivalent circuit electrical data for air coils on PVC 

LA µH 1.595 1.304 1.692 1.937 2.303 

CA pF 2.09 1.80 1.55 1.72 2.08 

RA k 16.97 12.40 17.92 21.81 27.40 

Equivalent circuit electrical data for coils on ferrite foils 

rel. perm. µr 45 

thickness µm 100 

LA µH 2.008 1.649 2.162 2.433 2.901 

CA pF 3.55 3.18 3.80 3.95 3.89 

RA k 12.85 10.18 11.91 13.80 17.20 

Relative increase of inductance due to ferrite sheet 

kL 1.259 1.268 1.278 1.256 1.259 
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● Typically an antenna is designed to allow optimum contactless transponder performance (energy requirements, load 

modulation) for a selected chip. 

● Tolerances in fabrication process (e.g. transponder capacitance) require to consider traces over a resonance frequency 

tolerance range (to cover all parts out of production). 
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Minimum required H-field for operation 

 The shift in (antenna) inductance due to ferrite 

causes a shift in the resonance frequency. 

 For energy-optimum resonance at 13,56 MHz carrier 

frequency, a different capacitance is required. 

 The resonance frequency tolerance range is similar, 

but... 

 Due to additional losses in the ferrite, the HMIN 

achievable with ferrite foil is higher / worse than for 

the air coil (depending on the ferrite properties). 
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● Sufficient load modulation is the 2nd main requirement for the transponder at the air interface.  

● The level must be high enough to allow error-free communication of transponder to reader, as defined in the standard. 

● We compare the phasor of the signal in the upper sideband for energy-optimum free air coil and coil on ferrite transponder 

(capacitance is adjusted properly). 
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Load modulation (at upper sideband (fC + fSC)) 

 We find an increase in the starting point for load 

modulation, which is caused by the increased HMIN 

(due to ferrite losses). 

 We find a decrease in the load modulation level.  

 For this case, the decrease is about 15 - 20 %. 

 The reason are, basically, losses of the ferrite foil. 

 

 

 

Basically, the ferrite foil means a transponder performance degradation compared to free air coils.  
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Hinweise – Notizen  

Thank you for your 

Audience! 

Please feel free to ask questions... 
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Questions for self-evaluation 

● What is a contactless transponder? How does an equivalent circuit (linear, time-invariant, one operating point) for a 

contactless transponder look like? 

● A transponder, consisting of a loop antenna of 3 µH, negligible capacitance and resistance, shows a resonance frequency 

of 15,0 MHz. Estimate the value for the equivalent parallel capacitance at the transponder input terminals! 

● Which are the main functional blocks of a contactless transponder? Which amount of current is typically available, for 

Vicinity and for Proximity transponders? Which type of loop antenna are used for which purpose? 

● Explain a measurement setup to characterize the properties of a contactless transponder (to get element values for a 

simple equivalent circuit). How do typical traces for equivalent input capacitance and equivalent resistance, as function of 

13,56 Hz carrier voltage, look like? 

● Explain a simple analytical model, to calculate the required H-field strength, for a contactless transponder to operate. How 

does the trace for required minimum H-field as function of resonance frequency look like? Explain what happens if the 

relation of C/L is varied, if the transponder current consumption is varied! 

 


