

09 Low Frequency Protocols

9th unit in course 451.417, RFID Systems, TU Graz

Benno Flecker Dipl.-Ing. Dr. Michael Gebhart, MSc

RFID Systems, Graz University of Technology SS 2023, March 06st

Content

- Applications
- FDX (Full Duplex) HDX (Half Duplex)
- ISO/IEC 11784/85
- ISO 14223
- Read Only Device

Applications

- Animal tagging Injectable Ear tags Bolus
- Reusable asset tagging gas cylinders beer kegs
- Industrial automation automotive parts electrical motors

Plastic cards

- club membership visitor services employee tracking
- Casino services gaming chips
- Waste management container tagging

Sports

marathon timing pigeon racing

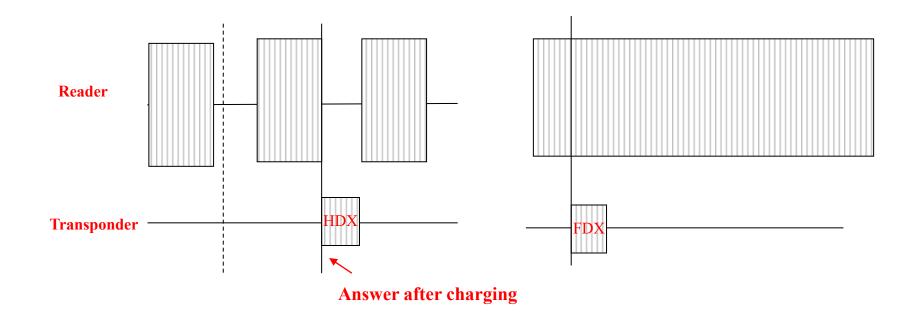
FDX (Full Duplex) – HDX (Half Duplex)

FDX – HDX Difference

HDX

External capacitor necessary

FDX Only IC and coil


FDX – HDX Difference

HDX

HDX communication requires that all readers in the surrounding are switched off at the same time.

FDX

FDX modulates the carrier of the reader. The reader field is switched on all the time

ISO/IEC 11784/85

ISO 11784 and ISO 11785 are international standards that regulate the radio-frequency identification (RFID) of animals, which is usually accomplished by implanting, introducing or attaching a transponder containing a microchip to an animal.

ISO 11784/85

- ▶ ISO 11784 specifies the structure of the radio-frequency identification code for animals.
- ISO 11785 specifies how a transponder is activated and how the stored information is transferred to a transceiver.

- Tag Talks First
- Standard for HDX and FDX transponder
- Frequency 134.2 kHz

Structure of the FDX diagram

The 128bit TTF data consist of the elements as listed below: 11bit Header ('0000000001') Part1 \rightarrow 64bit identification code according to ISO-11784 Part2 \rightarrow 16bit CRC Part3 \rightarrow 24bit trailer Bit stuffing \rightarrow every ninth bit beginning with Part1 must be set to '1'

Header	Identification Code					CRC		Trailer				
11 Bit	64 + 8 Bit				16 + 2 Bit		24 + 3 Bit					
	8 Bits											

64 bit identification code

Bit Number	Number of digits	Information	Description
1	1	Flag animal non animal application	set to 1 indicating that it is animal application
2 - 4	1	Retagging Counter , for lost eartags	This counter shall be used only, if a retagging with the same identification number is decided by the specific country (bits 17-26)
5 - 9	2	User Information Field	Information structure decided by the specific country (bits 17-26)
10 - 14	3	Reserved	The meaning of these bits remains unchanged. The value of these bits shall be set to "0"
15	1	Flag indicating advanced transponder	set to 1 indicating that it is an advanced transponder
16	1	Flag indicating data block	set to 1 indicating that the transponder contains additional data
17 - 26	4	ISO 3166 numeric 3 country code	Country codes from 900 to 998 manufacturers Country code 999 test transponder.
27 - 64	12	National identification code	Unique number within a country (274 877 906 944 Combinations)

FDX and HDX Systems

Parameter	FDX system	HDX system		
Activation frequency	134.2 kHz	134.2 kHz		
Modulation	AM-PSK	FSK		
Retum frequencies	129.0 kHz to 133.2 kHz	124.2 kHz (1)		
	135.2 kHz to 139.4 kHz	134.2 kHz (0)		
Encoding	modified DBP	NRZ		
Bit rate	4 194 bit/ s	7 762.5 bit/ s (1)		
		8 387,5 bit/ s (0)		
Telegram structure:				
– Header	11	8		
 Identification code 	64	64		
 Error detection code 	16	16		
— Trailer	24	24		
– Control bits	13	_		

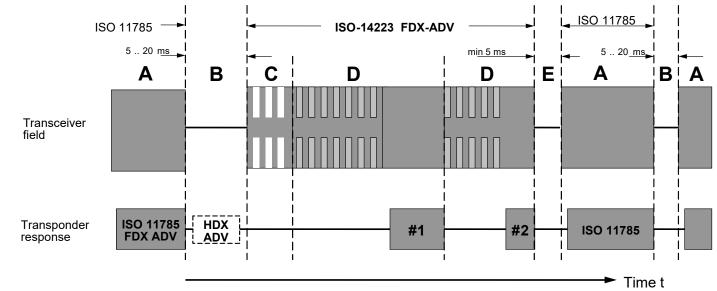
Structure of the HDX diagram

- 4 Parts:
- Part 1: 8 bit Header ('01111110')
- Part 2:64 bit Identifications code according ISO/IEC11784
- Part 3: 16 bit Cyclic Redundancy Check (CRC),
- Part 4: 24 bit Trailer

Header	Identification Code	CRC	Trailer
8 Bit	64 Bit	16 Bit	24 Bit
	LSB MSB		

ISO 14223

ISO 14223-1 specifies the air interface between the transceiver and the advanced transponder used in the radiofrequency identification of animals under the condition of full upward compatibility according to ISO 11784 and ISO 11785.


ISO 14223-2 specifies the code and command structure of the radio frequency (RF) system for advanced transponders for animals.

ISO 14223-3 specifies the applications of the radio frequency (RF) system for advanced transponders for animals.

ISO 14223 - Requirements

- Advanced transponders in the interrogation field perform like transponders according to ISO 11785.
- To bring the advanced transponder into the advanced mode, the transceiver shall send a valid request or a SOF.
- Bit 15 of the ISO 11784 frame shall be set to "1" indicating that this is an advanced transponder.
- Bit 16 of the ISO 11784 frame (additional data flag) shall be set to "1", indicating that the transponder contains additional data.
- To bring the advanced transponder back to the ISO 11785 mode:
 - is no longer in the interrogation field
 - has terminated the advanced operations and the interrogation field was switched off for at least 5ms afterwards
- All communication from transceiver to transponder and vice versa shall be transmitted starting with LSB first.
- In the case that multiple, advanced transponders are in the interrogation field which cause collisions the transceiver has to start the anti-collision procedure.

ISO 14223 - Communication Transponder => Reader

Cycle A: The transceiver reads the ISO 11785 frame. With the bits defined in the reserved field the transceiver detects, that an advanced FDX-ADV transponder is in the interrogation field. **Cycle B:** The transceiver switches off the interrogation field for at least 5 ms in order to reset the

transponder.

Cycle C: The transceiver sends either the SOF at the start of a valid request or the switch command to the transponder in order to put it into the advanced mode. Any of these has to be issued within the switch window after reset.

Cycle D: Read/Write or Inventory operation in the advanced mode.

Cycle E: After all operations are finished or the transponder left the antenna field, the transceiver switches off the field for at least 5 ms in order to poll for new incoming transponders (compatible with ISO 11785).

Reader to Tag

Data rate and Data Coding(PIE)

Meaning	Symbo I	min	max
Carrier off time	T _{F1}	4 * T _C	10 * T _C
Data "0" time	T _{Fd0}	18 * T _C	22 * T _C
Data "1" time	T _{Fd1}	26 * T _C	30 * T _C
Code violation time	T _{Fcv}	34 * T _C	38 * T _C
Stop condition time	T _{Fsc}	≥ 42 * T _C	n/a

Summary of the FDX and HDX systems

Parameter	FDX-ADV	HDX-ADV		
Down-link frequency	134.2 kHz			
Modulation (depth)	ASK (9	0 - 100%)		
Encoding	Pulse Interval Encoding			
Bit rate	Typically 5.5 kbps 2.8 kbps			
Switch command or SOF encoding	Binary Pulse Length			

Description of States

RF-Off state

The transponder is in the RF-Off state when it is not activated by the transceiver.

ISO 11785 state

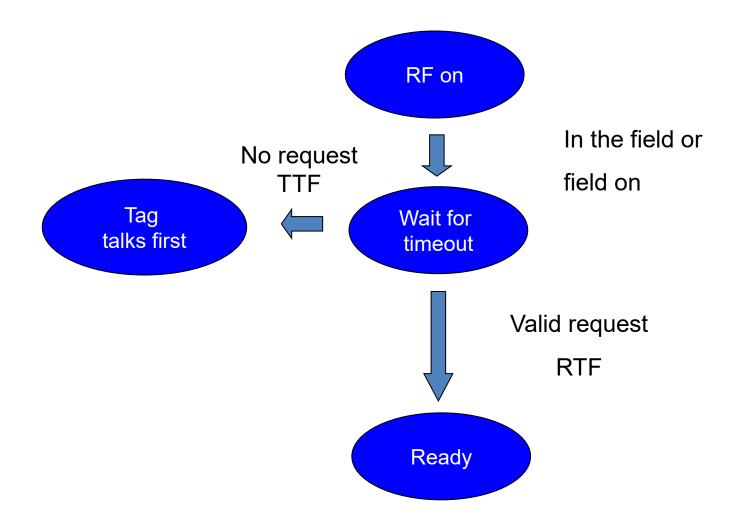
The state where the ISO 11785 protocol is executed.

Wait state

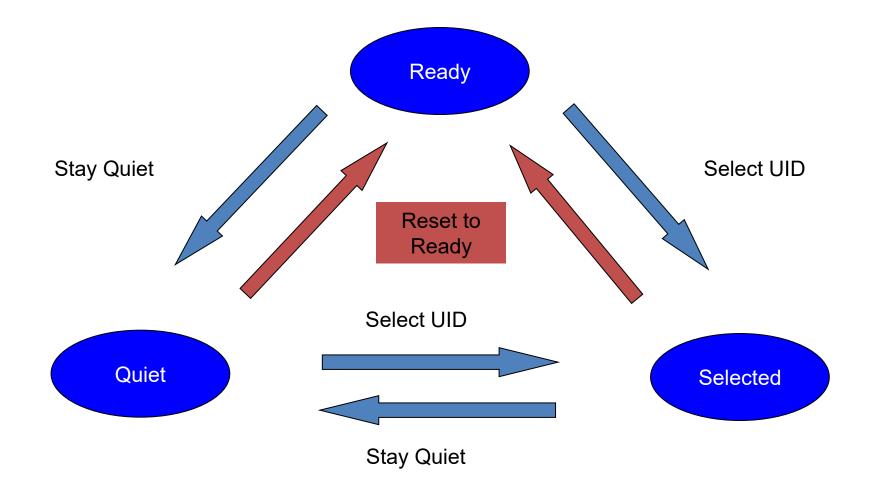
The wait represents a transition phase where the transponder can be switched to the advanced mode.

Ready state

The transponder moves to the ready state after receiving a valid request.

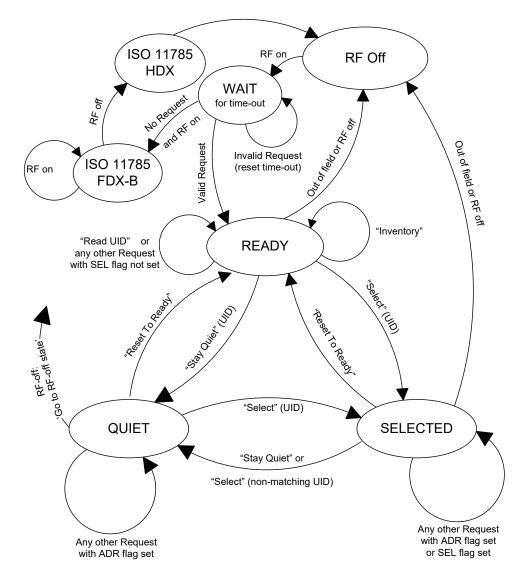

Quiet state

A transponder enters the Quiet state after receiving the STAY QUIET command issued to the transponder. In the Quiet state, the transponder shall process any Request where the ADR flag is set.


Selected state

A transponder enters the Selected state after receiving the SELECT command with a matching UID.(SEL flag = 1). Only one transponder shall be in the Selected state at any time.

State diagram switch window



Reader talks first

State Diagram

Out of field or RF off

Command List (Mandatory)

Command	Code	Туре	Function	Valid in state	
Inventory	'00'	Mandatory	Anticollision loop	Ready	
Stay quiet	'01'	Mandatory	Forces a transponder into the Quiet state	Ready, Selected	
Read UID	'02'	Mandatory	Fast reading of the transponders UID without collision protection	Ready	
RFU	'03-0F'				
Read multiple blocks	'12'	Mandatory	Reads multiple user memory blocks	Ready, Quiet, Selected	
Write single block	'14'	Mandatory	Writes a single user memory block	Ready, Quiet, Selected	
Lock block	'16'	Mandatory	Locks a single user memory block	Ready, Quiet, Selected	
Inventory ISO 11785 code	'23'	Mandatory	Inventory command including ISO 11785 code	Ready	

Read Only Device Sample

Memory structure Read only

1	1	1	1	1	1	1	1	1	9 header bits
		1						1	9 fieader bits
8 version bits or			D00	D01	D02	D03	P0		
custo	omer II	D		D10	D11	D12	D13	P1	
				D20	D21	D22	D23	P2	
32 da	ata bits	5		D30	D31	D32	D33	P3	
				D40	D41	D42	D43	P4	
				D50	D51	D52	D53	P5	
				D60	D61	D62	D63	P6	
				D70	D71	D72	D73	P7	
				D80	D81	D82	D83	P8	
				D90	D91	D92	D93	P9	10 line parity
				PC0	PC1	PC2	PC3	S0	bits

4 column parity bits

Manchester Code 64 bit Memory 2 kbit Datarate

Thank you for your Audience!

Please feel free to ask questions...

Questions for self-evaluation

- Give an overview of main standards for Low frequency.
- Explain the difference between HDX and FDX.

Additional standards for animal ID

ISO 3166 is an ISO standard published by the International Organization for Standardization (ISO) that defines codes for the names of countries, dependent territories, special areas of geographical interest, and their principal subdivisions (e.g., provinces or states).

ISO 24631 provides the means of evaluating the conformance and performance with ISO 11784 and ISO 11785 of RFID (radiofrequency identification) transponders used in the individual identification of animals.

References (1/2)

• ISO 11784:1996 Radio frequency identification of animals — Code structure

(Published Stage: 90.92 (Confirmed 2021))

Corrigenda / Amendments ISO 11784:1996/Amd 1:2004; ISO 11784:1996/Amd 2:2010

ISO 11785:1996 Radio frequency identification of animals — Technical concept

(Published Stage: 90.93 (Confirmed 2022))

Corrigenda / Amendments ISO 11785:1996/Cor 1:2008

• ISO 14223-1:2011 Radiofrequency identification of animals — Advanced transponders — Part 1: Air interface

(Published Stage: 90.93 (Confirmed 2022))

- ISO 14223-2:2010 Radiofrequency identification of animals Advanced transponders Part 2: Code and command structure (Published Stage: 90.93 (Confirmed 2021))
- ISO 14223-3:2018 Radiofrequency identification of animals Advanced transponders Part 3: Applications

(Published Stage: 90.93 (Confirmed 2023))

- ISO 3166-1:2020 Codes for the representation of names of countries and their subdivisions Part 1: Country code (Published Stage: 60.60)
- ISO 3166-2:2020 Codes for the representation of names of countries and their subdivisions Part 2: Country subdivision code (Published Stage: 60.60)
- ISO 3166-3:2020 Codes for the representation of names of countries and their subdivisions Part 3: Code for formerly used names of countries (Published Stage: 60.60)

References (2/2)

ISO 24631-1:2017 Radiofrequency identification of animals — Part 1: Evaluation of conformance of RFID transponders with ISO 11784 and ISO 11785 (including granting and use of a manufacturer code)

(Published Stage: 90.93 (Confirmed 2022))

- ISO 24631-2:2017 Radiofrequency identification of animals Part 2: Evaluation of conformance of RFID transceivers with ISO 11784 and ISO 11785 (Published Stage: 90.93 (Confirmed 2022))
- ISO 24631-3:2017 Radiofrequency identification of animals Part 3: Evaluation of performance of RFID transponders conforming with ISO 11784 and ISO 11785 (Published Stage: 90.93 (Confirmed 2022))
- ISO 24631-4:2017 Radiofrequency identification of animals Part 4: Evaluation of performance of RFID transceivers conforming with ISO 11784 and ISO 11785 (Published Stage: 90.93 (Confirmed 2022))
- ISO 24631-5:2014 Radio frequency identification of animals Part 5: Procedure for testing the capability of RFID transceivers of reading ISO 11784 and ISO 11785 transponders

(Published Stage: 90.93 (Confirmed 2020))

- ISO 24631-6:2011 Radiofrequency identification of animals Part 6: Representation of animal identification information (visual display/data transfer) (Published Stage: 90.93 (Confirmed 2022))
- ISO 24631-7:2012 Radiofrequency identification of animals Part 7: Synchronization of ISO 11785 identification systems (Published Stage: 90.93 (Confirmed 2022))